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The spatial dynamics of coastal and inland regions are highly variable and monitoring these waters with ocean
color remote sensors requires increased spatial resolution capabilities. A procedure for the spatial enhancement
of ocean color products, including chlorophyll and inherent optical properties (IOPs), is developed using a sharp-
ened visiblewater-leaving radiance spectrum for the visible infrared imaging radiometer suite (VIIRS). A new ap-
proach for spectral sharpening is developed by utilizing the spatial covariance of the spectral bands for
sharpening theM bands (412, 443, 486, 551, 671 nm; 750-m resolution) with the I-1 band (645 nm; 375-m res-
olution). The spectral shape remains consistent by the use of a dynamic, wavelength-specific spatial resolution
ratio that is weighted as a function of the relationship between proximate I- and M-band variance at each
pixel. A comparison of bio-optical satellite products at 375-m and 750-m spatial resolution with in situ measure-
ments of water leaving radiance and bio-optical properties show an improved capability of the VIIRS 375-m
products in turbid and optically complex waters, such as the Chesapeake Bay and Mississippi River Plume. We
demonstrate that the increased spatial resolution improves the ability for VIIRS to characterize bio-optical prop-
erties in coastal waters.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Characterizing the dynamics of coastal optical water properties is a
challenge due to the high spatial and temporal variability of optically ac-
tivewater constituents. These constituents include phytoplankton cells,
suspended particulate material (SPM; both inorganic and organic), and
chromophoric dissolved organic matter (CDOM), each of which have
distinct optical signatures that affect the absorption and scattering of
light in water, defining the water's inherent optical properties (IOPs;
Kirk, 1992). Numerous coastal processes can drive the spatial distribu-
tion of optical water properties, such as fluvial input, tidal activity,
eddy circulation, upwelling, and wind-driven mixing, thereby increas-
ing the optical variability of these waters at scales of micrometers to
kilometers (Dickey, 1991). As a result, major spatial limitations exist
when attempting to characterize these complex waters with a ship-
board sampling regime (Hu et al., 2004a; Miller, Twardowski, Moore,
& Casagrande, 2003).
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andermeulen).
The spatial extent of these surface bio-optical properties can be de-
termined from changes in satellite-detected water leaving radiance
(Lw), enabling a more synoptic, albeit two-dimensional view of various
ocean parameters on a global basis (Lewis, 1992). When using remote
measurements to resolve ocean processes, two things must be consid-
ered: 1) the resolution capabilities of the remote detector, and 2) the
spatial coherence of the process(es) to be studied. Spatial coherence de-
scribes the scales of variability within a system and helps determine the
optimal pixel size for a satellite detector, or the ground sampling dis-
tance, to fully characterize the variability of a system. Semi-variogram
analyses have shown that these spatial coherence scales are smaller in
coastal and shelf waters and increase to larger scales in open oceanwa-
ters. Previous studies suggest a minimum ground sampling distance of
100-m for turbid estuaries (Bissett et al., 2004), while dominant scales
of patchiness typical of coastal waters are resolved at 300 to 500-m spa-
tial scales (Aurin, Mannino, & Franz, 2013; Davis, Kavanaugh, Letelier,
Bissett, & Kohler, 2007).

The spatial resolution of many polar-orbiting sensors (~1 km) is
often too coarse to fully unravel the variability associated with fine-
scale coastal processes (IOCCG, 2012). Some sensors, such as the
moderate/medium resolution imaging spectroradiometers (MODIS
and MERIS, respectively) are equipped with higher spatial resolution
bands (250–300 m), which have been successfully used to monitor
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coastal and inland waters for various parameters such as suspended
solids (Miller & McKee, 2004), cyanobacterial blooms (Matthews,
Bernard, & Winter, 2010), chlorophyll-a (Giardino, Candiani, & Zilioli,
2005; Moses, Gitelson, Berdnikov, & Povazhnyy, 2009), IOPs (Ladner
et al., 2007), and general water quality (Floricioiu, Rott, Rott, Dokulil,
& Defrancesco, 2004; Hu, Nababan, Biggs, & Muller-Karger, 2004b).
While satellite systems with even higher spatial resolution capabilities
do exist, such as the Hyperspectral Imager for the Coastal Ocean
(HICO; 100-m spatial resolution), the Landsat series (30-m spatial reso-
lution), or WorldView-2 (3-m spatial resolution), the temporal revisit
time (1+ week) is not sufficient to resolve the temporal variability of
coastal processes. These optically complexwaters require the use of sat-
ellite sensorswith sub-kilometer spatial resolution at all visible bands as
well as a revisit time of at least once per day to capture the rapidly
changing dynamics of coastal waters (Matthews, 2011).

The Suomi National Polar-orbiting Partnership (SNPP) satellite with
the Visual Infrared Imaging Radiometer Suite (VIIRS) offers daily cover-
age of the world, with some limited regional coverage of more than
once per day (Arnone et al., 2013). VIIRS has 7 visible/near infrared
moderate resolution (M)-bands (λ = 410, 443, 486, 551, 671, 745,
865 nm) at a spatial resolution of 750-m at nadir, and two visible/near
infrared imaging (I)-bands (λ = 640, 865 nm) at a spatial resolution
of 375-m at nadir (Fig. 1). The 750-m bands offer spatial improvement
compared to the analogous 1-kmMODIS bands at nadir, in conjunction
with a unique along-scan aggregation scheme that enables the retrieval
of higher resolution data retrievals at high zenith angles (Baker, 2011).
The utilization of the visible 375-m I1 band enables great potential to
resolve the spatial variability present in complex coastal waters as
the spatial scale offers four times more data than 750-m resolution
M-bands, and approximately seven times more data than 1-km scales.

The higher resolution of the broad spectral I1 band (600–680 nm)
may be used to spectrally enhance the spatial variability at other
(lower resolution) visible wavelengths. In a previous study, Gumley,
Descloitres, and Schmaltz (2010) used the 250-m high resolution
MODIS band 1 (with similar spectral characteristics to VIIRS I1 band)
to sharpen 500-m moderate resolution MODIS bands in order to pro-
duce true color imagery at a spatial resolution of 250-m. The Gumley
et al. computation for MODIS sharpening is given as a ratio of high to
low resolution top of the atmosphere (TOA) radiances:

R ¼ B640

B�
640

ð1Þ

where

R spatial resolution ratio
B640 band 1 (640 nm) at 250-m resolution
B640* band 1 (640 nm) at 500-m resolution, projected to 250-m

resolution (duplicated pixels)
Fig. 1. The relative spectral response of the SNPP–VIIRS ocean color/NIR bands. Bands M1–M
(375-m).
The lower resolution spectral bands (in this case, the 500-m spatial
resolution bands centered at λ = 470 and 555 nm) are subsequently
sharpened by:

Bλ ¼ RB�
λ ð2Þ

where

Bλ band (λ) at 250-m resolution
Bλ* band (λ) at 500-m resolution, interpolated to 250-m

resolution

In short, the “spatial resolution ratio” empirically determines how
each high resolution (MODIS band 1) pixel spatially differs from its
neighboring pixel and applies that information about Band 1 variability
to sharpen the lower resolution bands at otherwavelengths. This sharp-
ening techniqueworkswell for producing enhanced true color imagery,
but it has the potential to introduce some spectral artifacts and cannot
be applied to retrieve quantitative Lw measurements directly, as it cen-
trally relies on the assumption that ocean color variability is unchanging
across the visible spectrum. In other words, the approach assumes that
the same spatial resolution differences that exist at 250-m in the red
portion of the spectrum (645 nm) are also the same for the green and
blue portions of the spectrum (410–555 nm). However, each optically
active constituent in natural waters imparts its own unique spectral
signature based on differing absorption and scattering coefficients, as
well as its relative abundance. For example, high concentrations of
suspended particles close to shore increase the backscattering coeffi-
cient relative to the absorption coefficient, which will be amplified in
the red regions of the spectrum (600–700 nm)where there is lower ab-
sorption by particles (Miller & McKee, 2004). Meanwhile, wavelengths
in the blue region of the spectrum, while also backscattered in the pres-
ence of suspended particles, are heavily influenced by absorption of
phytoplankton cells, CDOM, and detrital material (Kirk, 1994). There-
fore, what bio-optical variation is present in the red band (I1) is not
strictly translatable to the bio-optical variability in the other visible
bands.

Nevertheless, for spatially dynamic waters, such as those found in
coastal regions, the high resolution I1 band can potentially yield useful
information about ocean color variability. But in order to apply a spatial
resolution ratio approach to sharpen other spectral bands, onemust ac-
count for the dependence of spatial variability on spectralwavelength in
waters of differing composition. In order to fullymaximize the use of the
VIIRS I1 band, we propose an adaptive image sampling technique that
utilizes the relative covariance or divergence in radiance patterns occur-
ring across the visible range of the light spectrum to spatially sharpen
the visible spectral M(λ) bands. The objectives of this paper are to
1) demonstrate an enhanced spatial resolution in VIIRS by applying a
spectrally weighted band-sharpening based on spatial coherence,
7 are at a resolution of 750-m, while the I1 and I2 bands have a higher spatial resolution
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2) ensure that optical consistency is maintained across the visible spec-
trum through qualitative and quantitative validation of the high resolu-
tion satellite products, and 3) demonstrate that increased resolution of
bio-optical products improves the VIIRS characterization of coastal
waters.

2. Data and methods

2.1. Initial satellite data processing

Level 1 VIIRS sensor data records (SDRs) were downloaded
from NOAA's Comprehensive Large Array-data Stewardship System
(CLASS, www.class.noaa.gov). All files were processed from SDRs (raw
radiance+ calibration) to environmental data records (EDRs; geophys-
ical parameters) using the Naval Research Laboratory's Automated
Processing System (APS v5.1). The APS uses the software package,
n2gen, which is very similar to the open source l2gen software
used by the NASA Ocean Biology Processing Group (OBPG). The APS
is presently capable of processing the M bands of VIIRS to produce
750-m resolution bio-optical products, and also has the capability to
process the five imaging bands. The scenes were processed using
standard (Gordon&Wang, 1994) atmospheric correction at a resolution
of 750-m, utilizing multi-scattering and iterative near infrared (NIR)
correction (Stumpf, Arnone, Gould, Martinolich, & Ransibrahamanakul,
2003). Standard flagswere used tomask interference from land, clouds,
sun glint, and other potential disturbances to the radiance signal.

The proposed adaptive sharpening technique is a post-processing
step that was performed on the atmospherically corrected normalized
water leaving radiance (nLw) products using interactive data language
(IDL). Normalized water leaving radiance is defined as the radiance
backscattered out of the water in the absence of atmosphere and with
the sun at the zenith (Gordon & Clark, 1981). The spectral nLw products
are frequently used to compare satellite radiometry with in situ values,
and are the basis for which subsequent bio-optical algorithms are calcu-
lated. It is important to perform the proposed sharpening function on
nLw products to ensure that the derived spatial variability information
is that associated with ocean color, and not the atmospheric compo-
nents that are incorporated into the top of the atmosphere signal. In ad-
dition, the NIR iterative technique used in atmospheric correction
algorithms is compromisedwhen the resolution of the atmospheric cor-
rection bands differ from the visible bands. Attempts to sharpen the at-
mospheric correctionwith the I2 band (865 nm)were unsuccessful due
to the low signal to noise (SNR) ratio of the I2 band compared to theM7
band (862 nm; Vandermeulen, Arnone, Ladner, & Martinolich, 2013).

2.2. Adaptive-sharpening technique

This new approach expands on the methodology described by
Gumley et al. (2010), with somemodifications. We will compute a sim-
ilar spatial resolution ratio (Eq. 1) using the VIIRS I1 band to sharpen the
VIIRS M(λ) bands, using atmospherically corrected nLw. In order to ad-
dress the spectral dependence of optical variability in natural waters,
we apply an adaptive weighting function to compute a wavelength de-
pendent spatial resolution ratio. This ratio is based on the proximal co-
variance between the 375-m I1 band and each individual 750-m M(λ)
band. The spectral ‘weight’ of the I1 band sharpening is determined at
everywavelength from a spatial covariance ratio, ρ(λ), and is computed
from a moving 5 × 5 array surrounding each pixel in the image:

ρ λð Þthresh¼1 ¼ σ=μ½ �M λð Þ
σ=μ½ �I1

ð3Þ

where

thresh = 1 Covariance ratio threshold; ρ(λ) data greater than 1
converted to value of 1
[σ/μ]M(λ) VIIRS M(λ) band coefficient of variance for 5 × 5 sub-array
(M-band interpolated to 375-m)

[σ/μ]I1 VIIRS I1 band coefficient of variance for 5 × 5 sub-array

The covariance ratio, ρ(λ), is obtained by dividing theM(λ) band co-
efficient of variance (standard deviation [σ]/mean [μ] of 5 × 5 sub-array
surrounding the pixel) by the I band coefficient of variance of nLw at the
same location. The M band is bi-linearly interpolated to 375-m projec-
tion in order to make statistical calculations comparable to that of the
I1 band. In addition, all ρ(λ) values N 1 are replaced with a value of 1
to prevent over sharpening in coastal regions. To clarify this action,
since the denominator (I1 band) is not interpolated and represents
true geophysical variability, we limit the influence of the weighting
function based on the variability we confidently know exists, or, that
within the I1 band, and not that which may have been interpolated by
the M(λ) band.

The calculation of covariance between the I1 band and the M(λ)
band ultimately enables the spatial resolution ratio to be optimized for
each M(λ) band. Essentially, where the variability between the I1
band and a particular M(λ) band is similar at 750-m resolution, the as-
sumption is made that there is similar spatial coherence at 375-m reso-
lution as well. If this variability is resolved at each pixel, it is now
possible to independently weight the spatial resolution ratio according
to the relative variability present at eachM(λ) band. Theweight applied
will change not only as a function ofwavelength, but also thewater type
(i.e. high/low absorption/scattering waters), and the specific band re-
sponse in that water type. Fig. 2A shows the spectral variability of nLw
for various regions of interest (ROI; 25 × 25 pixel mean and standard
deviation), from coastal to open ocean bluewater, illustrating the diver-
sity of water types in coastal areas. Fig. 2B shows the corresponding
spectrum of the covariance ratio, ρ(λ). The higher the ratio, the higher
the I1 band covariance with the particular M(λ) band, and the higher
the weight that will be applied to the sharpening.

Using this information about the covariance of bands, the weight
may now be calculated and applied to the spatial resolution ratio in a
stepwise process to spatially enhance all M(λ) bands with the I1 band.
The next step is to compute a variability index (ϖ), which will define
how each I1 band pixel at 375-m resolution (I1VIIRS) differs from the
corresponding I1 band pixel at 750-m resolution (I1VIIRS*):

ϖ ¼ I1VIIRS−I1 �
VIIRS ð4Þ

where

I1VIIRS VIIRS I1 band nLw at native resolution (375-m)
I1VIIRS* VIIRS I1 band nLw at 750-m resolution (2 × 2 pixel average,

duplicated to 375-m projection)

Each 750-m I1 Band pixel is calculated by averaging a 2 × 2 pixel
sub-array within the I1 band, and placing four duplicated pixels (2 × 2
average) in the original 375-m spatial projection. The variability index,
ϖ, isolates the spatial difference information contained within the I1
band, and is ultimately the value that will be independently weighted
for each wavelength. The spectral weight, ω(λ), applied to each band
is calculated as the product of the covariance ratio, ρ(λ), and the vari-
ability index,ϖ:

ω λð Þ ¼ ϖρ λð Þ: ð5Þ

The spectral weight term adjusts the pixel to pixel differences of the
I1 band by the covariance ratio, enabling the I1 band to essentially be re-
constructed using this new weight. This re-construction is made by
adding the wavelength dependent weight to the VIIRS I1 Band nLw at
750-m resolution to make a weighted I1-band, I1ω(λ):

I1ω λð Þ ¼ ω λð Þ þ I1 �
VIIRS : ð6Þ

http://www.class.noaa.gov


Fig. 2. Region of interest (ROI) analysis for a 25 × 25 pixel box in various water types for the northern Gulf of Mexico. The true color image (showing location of ROI) and data plots are
derived from a Level 2 SNPP–VIIRS image on November 08, 2012. (A) The visible nLw spectrum for various ROI is displayed, showing different water types and (B) the corresponding vis-
ible spectrum of the covariance ratio, ρ(λ), see Eq. (3). The amount of covariance of eachM(λ) band to the I1 bandwill relate to how eachwavelength is sharpened by the I1 band. As the
amount of covariance increases/decreases, the weight of the I1 band sharpening increases/decreases proportionally.
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Thus, the pixel to pixel differences existing in the weighted I1-band
reflect the variance patterns of the M(λ) band being sharpened more
accurately. The final step in isolating the wavelength specific variance
information is to apply Eq. (1), and calculate a wavelength dependent
spatial resolution ratio, R(λ):

R λð Þ ¼ I1ω λð Þ
I1 �

VIIRS
: ð7Þ

The VIIRS 750-m M(λ) band nLw product is spatially enhanced to
375-m using:

M375 λð Þ ¼ R λð ÞM λð Þ� ð8Þ

where

M(λ)* VIIRSMband (λ) nLwproduct at 750-m resolution, pixels du-
plicated to 375-m projection

This process is repeated for the complete visible spectrum to create a
sharpened 375-m nLw product for each M(λ) band.

2.3. Derivation of bio-optical products

After obtaining a high resolution spectrum, the sharpened nLw
values are placed back into the satellite processing software. The high
resolution nLwproducts are then fed into various bio-optical algorithms
to derive any existing satellite products at 375-m spatial resolution. For
this study, we produced and examined the effect of increased resolution
on satellite products of spectral nLw, chlorophyll-a (chl_oc3, O'Reilly,
et al., 2000), and quasi-analytical algorithm (QAA) bio-optical products
of absorption and backscattering (Lee, Carder, & Arnone, 2002), as well
as derived beam attenuation.

We note that beam attenuation (c) cannot be directly measured by
satellite radiometry, as it is the sum of total absorption (aT) and total
scattering (b) in all directions, while the satellite-detected reflectance
of sunlight is only a function of total absorption and backscattering
(bb) towards the sensor. In order to obtain beam attenuation from a
space-borne sensor, there must be an integration of the volume scatter-
ing function (VSF), which describes the angular variation of scattered
light in the forward and backward direction (Mobley, 1994). This ulti-
mately enables the relation of scattering in the backward hemisphere
(bb, as seen from space) to the total scattering (b), the latter of which
is the VSF integrated over all directions. Petzold (1972) normalized sev-
eral measurements of VSF to total b, to obtain volume phase functions
for seawater (which can be used to derive bb from b, or vice versa),
and the average of hismeasurements arewidely used in radiative trans-
fer equations. Operating on the principle that c= aT + b, we computed
beam attenuation for VIIRS using aT from QAA (Lee et al., 2002), and
converted bb (QAA) to b using Petzold's average phase function. The av-
erage Petzold derived bb/b=0.0183 compared verywell to the ratio de-
rived from the in situmeasurements used for comparisons in this study
(bb/b = 0.0182), therefore some quantitative evidence exists that the
Petzold function used to derive satellite estimates of c should provide
reasonable values in these turbid waters.

2.4. In situ data matchups and statistics

A database of in situ reflectance, inherent optical properties (IOPs),
and chlorophyll fluorescence measurements were collected from three
cruises spanning from August to November 2013 to validate enhanced
spatial resolution products. This data encompasses a series of coastal tur-
bid and clearwater environments in the Northern Gulf ofMexico and the
Chesapeake Bay (Fig. 3). A total of 44 satellite-concurrent reflectance
measurements were obtained for this study, using multi-cast HyperPro
data (Zibordi, D'Alimonte, & Berthon, 2004a), a modified sky-blocked
floating Hyperpro (Lee, Pahlevan, Ahn, Greb, & O'Donnell, 2013), Analyt-
ical Spectral Device, Inc. (ASD) measurements following the protocols of
Fargion and Mueller (2000), and data collected from the SeaPRISM
AERONET site (WavCIS CSI-06, Zibordi, Mélin, Hooker, D'Alimonte, &
Holben, 2004b). All reflectance data were convolved to the VIIRS relative
spectral response (Moeller, McIntire, Schwarting, &Moyer, 2011). The in
situ IOP data (total absorption and beam attenuation) were measured
using a Wetlabs AC-9, collected from vertical profiles and a continuous



Fig. 3.Mapof in situ sample locations and types used formatchup to VIIRS satellite retrievals fromChesapeake Bay, USA and the northern Gulf ofMexico, USA. Sampleswere retrieved from
various water-types and geographic locations to provide a diverse set of measurements for algorithm assessment.
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surface flow-through system equipped with a de-bubbler. Chlorophyll
fluorescence data were obtained with in situ sensors (Wetlabs ECO-
FL3) calibrated with fluorescence in the laboratory (Welschmeyer,
1994). Satellite and in situ matchups were within 3 h of the VIIRS over-
pass, with the exception of the chlorophyll fluorescence data, where
this window was opened to 5 h due to insufficient quantity of data
points.

Quantitative assessments of the algorithm performance included
statistical analysis to determine the functional relationships and relative
errors between the in situ and satellite data. Scatter plots were generat-
ed for multiple product comparisons, including the derived regression
slopes and intercepts, as well as coefficients of correlation (R). Reduced
major axis (Type II) regression models were chosen over ordinary least
square regressionmodels, as all sets ofmeasurements used in the statis-
tical comparisons contain multiple potential sources of error (Sokal &
Rohlf, 1995).We performed a Breusch-Pagan test for heteroscedasticity
on all data comparisons, and removed outlier residuals until we accept-
ed the null hypothesis of constant error variance (i.e. data was homo-
scedastic) to ensure validity of statistical analysis. In addition, we
computed the root mean squared error (RMSE) and the normalized
meanbias (NMB)between twomeasurements being compared, accord-
ing to the following equations:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Xi− Yið Þ2
vuut ð9Þ

NMB ¼ 100 �
XN

i¼1
Yi−Xið Þ

XN

i¼1
Xi

ð10Þ

where, X is the in situ value, and Y is the satellite retrieved value.
In some cases, statistics were generated to compare the relationship
between two satellite-derived values, in which X is the standard
VIIRS product at 750-m spatial resolution, and Y is the VIIRS product
at 375-m spatial resolution. The RMSE takes into account the mean
and variance of the error distribution, and defines the random error
(Campbell & O'Reilly, 2006). The NMB is important as well since it de-
fines the systemic error, and cannot be minimized with averaging.
3. Results and discussion

3.1. Algorithm output and assessment

The adaptive band sharpening techniquewas applied to enhance the
visible nLw spectrum for a cloud-free scene in the northern Gulf of
Mexico from November 08, 2012. This image covers a wide variety of
water types, including a high CDOM river plume, and heavy sediment
loads close to shore. Fig. 4A–E illustrates an intermediate stage of the
processing, where ρ(λ) is computed (see Eq. 3) for each wavelength.
The subpanel figures illustrate where the sharpening weights are
being applied at each wavelength as a function of variability relative
to the I1 band. The results show that the greatest amount of sharpening
(white areas) occurs at various ocean boundary regions, from coastal
fronts (Fig. 4A, A-1) to offshore plumes (Fig. 4D, D-1), and varies consid-
erably throughout the image for different wavelengths. This is because
the spectral dependence of the sharpening weight varies with differing
water types.

For example, even though there is less blue radiance closer to shore
as a result of high CDOMabsorption, the I band sharpeningweight is in-
creased at 410 nm (Fig. 4A, A-1), likely due to the presumed covariance
with red backscattering (suspended particles) in close proximity to
land. Fig. 4D (D-1) also shows that the 551 nm band tends to covary
with the I1 band in the CDOM-rich Mississippi River plume. The ratio
of red to green reflectance has been found to show a robust correlation
with estimates of CDOM in coastal (Kutser, 2009; Miller, Del Castillo, &
McKee, 2005; Vandermeulen, 2012) and lake (Kutser, Pierson, Kallio,
Reinart, & Sobek, 2005; Menken, Brezonik, & Bauer, 2006) waters.
Fig. 4E illustrates a large covariance of the 671 nm band with the
640 nm band throughout the image, which may be expected given the
similar spectral characteristics between the bands. There is some devia-
tion from this relationship into the blue offshore waters, likely due to
the low signal to noise ratio of the I1 band in clear waters (Schueler
et al., 2002). This showcases the self-regulating nature of the algorithm,
in which large changes to radiometric quantities are moderated by re-
ducing the weight of the denominator (I1 band) as variance between
the two bands is increased. For instance, a 10-fold decrease in M(λ)
band variance relative to the I1 band variance would lead to 1/10 of
the original I-1 band weight to be applied, and the original M(λ) band
value is not changed substantially.

From a satellite perspective, water leaving radiance is the integra-
tion of signal over the first optical depth (Gordon & McCluney, 1975).



Fig. 4. Images of the λ-dependent covariance ratio, ρ(λ) (see Eq. 2) at (A) 410 nm, (B) 443 nm, (C) 486 nm, (D) 551 nm and (E), 671 nm, an intermediate step in the adaptive sharpening
technique. The lighter regions show the areas where the I1 band weight was applied higher relative to the darker regions. Notice that the weight is applied heavier within the offshore
plume boundary region for the M4-band (D-1) while the coastal regions are weighted heavier in the M1-band (A-1).

Fig. 5. Comparison of SNPP–VIIRS nLw_410 product at standard 750-m resolution (A, D), 375-m resolution with using the weighted ratio sharpening technique proposed in this paper
(B, E), and 375-m resolution using a non-weighted I1 band spatial resolution ratio (C, F). Amarked increase in detail in coastal gradients and optical fronts is shown in the 375-mresolution
image produced from the weighted ratio (B), helping resolve ocean features in highly dynamic regions. The speckled imagery produced from the non-weighted I1 band ratio technique
(C, F) illustrates the importance of correcting for spectral covariancewhen sharpening. Note that in the offshore bluewaters (D–F), theweighted ratio (E) is not substantially different from
the original 750-m resolution image (D), as the I1 band variance increases relative to the M1 band.
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Therefore, changes in radiance detected from satellite imagery are de-
pendent on subsurface optical layers, and a single M(λ) band pixel
value is not necessarily the arithmetic mean of the sub-pixel variation
present in spatially inhomogeneous waters with varying integration
depths. While water relatively high in backscattering constituents
may tend to exhibit radiance in a more 2-dimensional (horizontal) do-
main as light is quickly reflected from the surface of the ocean, waters
dominated by penetrating absorption properties are generally 3-
dimensional (horizontal and vertical) from a water leaving radiance
perspective (Lee, Hu, Arnone, & Liu, 2012). Since red light from the I1
band is attenuated much more quickly than blue light, and since blue
light ismore affected by absorption in coastal waters, it becomes neces-
sary to account for the difference in sub-pixel variation when using the
high resolution red band to sharpen a lower resolution blue band. The
sharpening methodology attempts to partially mitigate this incoher-
ence by assuming that the changes in spatial variance betweenmultiple
bands incorporate this non-linearity of signal. For example, in a vertical-
ly stratified water mass, where the blue (M1 band) nLw signal may ex-
tend below the mixed layer, and the red (I1 band) nLw signal does not,
the potentially large discontinuities in the integration depth for the two
different bands would likely lead to a divergence of variance. Thus, the
sharpenedM1bandwill only incorporate a small weighted fraction of I1
band variability, and the M1 band largely retains the larger depth-
integrated radiance signal. Next, we will evaluate the viability of these
assumptions made by the algorithm by examining how the subtle
changes to radiometric values manifest in the imagery.
Fig. 6.Multi-regional comparison of SNPP–VIIRS backscattering at 551 nm(bb_551_qaa) produc
ening techniqueproposed in this paper. Small errors in the spectral sharpening technique have t
any visual irregularities and the qualitative improvement of frontal features demonstrate the adv
River Plume on May 14, 2013, (middle) Chesapeake Bay on April 06, 2013, and (bottom) San F
3.2. Qualitative analysis (image comparisons)

We qualitatively examined the spectrally sharpened nLw products
produced for the same cloud-free scene in the northern Gulf of
Mexico. Fig. 5 emphasizes the enhancement of a coastal frontal feature
(Fig. 5A–C) as well as offshore blue waters (Fig. 5D–F) in the nLw
410 nm band. The nLw_410 product is chosen for display, as it is the
furthermost spectral distance from the high resolution nLw_640 prod-
uct, and is therefore most likely to showcase any potential artifacts in-
troduced through the spectral sharpening process. Fig. 5A and D
shows the highlighted nLw_410 features at 750-m resolution, while
Fig. 5B and E shows these features at 375-m resolution, using the pro-
posed weighted ratio technique. Figs. 5C and F also shows nLw_410 at
375-m resolution, but demonstrates some of the artifacts (speckled
imagery) that are introduced into the sharpening technique when as-
suming that spatial variability is constant across the visible spectrum
(i.e. using a single I band spatial resolution ratio for the entire spec-
trum). This illustrates the importance of adjusting theweight of the spa-
tial resolution ratio according to the amount of covariance between the
bands. In the offshore waters, where divergence in variability between
the I1 band and the M1 band is likely to occur (Fig. 4A), there are only
small differences present between the M1 band at 750-m (Fig. 5D)
and the weighted M1 band at 375-m (Fig. 5E). This demonstrates that
in waters where there is less confidence to utilize the I1 band variance
information, the image largely remains unchanged. If the sharpening
adjustment is not weighted (Fig. 5F), the I1 band variance interferes
t at standard 750-m resolution and 375-m resolutionwith using theweighted ratio sharp-
hepotential to bepropagated andenhancedwhenpushed through theQAA. The absence of
antages to band-sharpening in coastal and inlandwaters. Images shown: (top)Mississippi
rancisco Bay on January 16, 2013.



Fig. 7. Scatter plot of normalizedwater leaving radiance (in mW/cm2/m/sr), comparing 220 in situ data points in various water types to the corresponding single pixel VIIRS extraction at
375-m resolution (left) and 750-m resolution (right). Note that nomajor outliers are introduced by the VIIRS 375-m series, suggesting that the VIIRS data is not adversely impacted by the
weighted sharpening technique.

60 R.A. Vandermeulen et al. / Remote Sensing of Environment 165 (2015) 53–63
with the M1 band substantially. The quantitative spectral consistency
(i.e. the preservation of the spectral shape) using the weighted sharpen-
ing technique is demonstrated by the low NMB derived from directly
comparing spectral nLw values from VIIRS375m and VIIRS750m for a large
coastal region of interest (N = 95,160) in the image (no plot shown;
NMB = −3.42E−03, −1.26E−02, −1.18E−02, −4.68E−03, and
−7.41E−03% for bands M1–M5, respectively).

The sharpened visible spectrum can then be used to produce high
resolution bio-optical products. Fig. 6 shows the QAA backscattering
product at 551 nm (bb_551_qaa) at 750-m and 375-m resolution in
theGulf ofMexico, Chesapeake Bay, and San Francisco Bay, emphasizing
several turbid coastal plumes and bays. Visually, the enhancement of
frontal boundaries in coastal waters demonstrates the advantage of
using the proposed sharpening technique in waters where these fea-
tures are prevalent. In the Chesapeake Bay image, there is even some
detection of various land boundaries (e.g. bridges) that were smoothed
over in the 750-m image. Fig. 6 qualitatively shows that the process of
using the high resolution spectrum as input into multi-spectral algo-
rithms does not introduce any visual artifacts into the imagery. Quanti-
tatively, we demonstrate this low error by comparing backscattering
values from VIIRS375m and VIIRS750m for a large region of interest in
the Mississippi River outflow (N = 95,160), which show a low RMSE
(1.99E−03 m−1) and NMB (1.34E−02%). The band sharpening tech-
nique reveals a clear improvement to feature detection, and shows
that there are no apparent visual irregularities introduced by the algo-
rithm. Next, we gauge how well this enhancement of imagery will im-
prove the estimation of in situ returns, and assess whether it provides
a practical use to ocean color research.

3.3. Quantitative analysis (in situ matchups)

The quality of the sharpening algorithmwas evaluated by analyzing
matchups of satellite-derived values with ground measurements of
Table 1
Summaryof statistics comparing in situ spectralwater leaving radiancematchups to the corresp
RMSE is in units of mW/cm2/m/sr. Note that the correlation coefficients (R) are higher for the

VIIRS 375-m sharpened

λ 410 443 486 551 671

Slope 1.0197 0.9470 0.9808 1.0654 1.115
y-int 0.0246 0.0376 −0.0013 −0.0646 0.031
R 0.6636 0.8908 0.9492 0.9715 0.970
RMSE* 0.177 0.143 0.138 0.135 0.115
NMB (%) 8.09 0.93 −2.05 0.19 25.61
N 44 44 42 40 42
water leaving radiance. Fig. 7 shows a scatter plot of the VIIRS375m and
VIIRS750m center pixel nLw retrievals for all wavelengths against a di-
verse collection of in situ spectral matchups. The plots show an overall
higher R value for the comparison between the in situ data and the
VIIRS375m dataset, relative to the VIIRS750m dataset. As a first order ap-
proximation, this may suggest an enhanced overall performance of the
sharpened satellite data to represent in situ data, but importantly dem-
onstrates that there are nomajor outliers introduced through the sharp-
ening algorithm. A spectral summary of statistics comparing in situ to
satellite data is shown in Table 1, enabling a more definitive quantifica-
tion of errors and overall performance. The results of the spectral
matchups are similar to those found from other coastal studies with
the VIIRS sensor (Arnone et al., 2012; Hlaing et al. 2013; Bowers et al.,
2014; Ladner et al., 2014), showing high overall correlation coefficients
(R N 0.95) in the M3–M5 bands, and lower R values in the M1 and M2
bands. Note, at everywavelength, the correlation coefficients are higher,
and the RMSE lower, for nLwestimates derived from theVIIRS375m com-
pared to VIIRS750m. The higher correlations and an overall reduction in
random error for 375-m satellite retrievals suggest an improvement to
VIIRS estimating spectral nLw for turbidwaters. The NMB values are rel-
atively similar between the two resolutions for bands M1–M5, with
VIIRS375m data showing some improvement (NMB is closer to zero) in
bands M1, M2, and M4, but a slightly elevated bias in M5.

Additional analysis examines the effect of placing sharpened 375-m
nLwvalues into the satellite processing software (n2gen) to output high
resolution bio-optical products. Here, any uncertainties in the spectral
shape will likely be magnified in empirical chlorophyll algorithms,
which use a ratio of Rrs_551 to Rrs_486 or Rrs_443 to estimate chloro-
phyll concentration (O'Reilly, et al., 2000). Fig. 8A shows a comparison
of center pixel extractions of VIIRS375m and VIIRS750m chlor_a products
with triplicate-averaged (where available) in situ surface chlorophyll-
a measurements collected during the 2013 NOAANational Marine Fish-
eries Service fall plankton survey (August 21–September 02, 2014).
onding single pixel VIIRS extractednLwproduct at 375-m resolution and750-mresolution.
VIIRS 375-m resolution dataset at every wavelength. All values of p b 0.001.

VIIRS 750-m standard

410 443 486 551 671

4 1.0188 0.9331 0.9947 1.0588 1.2015
1 0.0271 0.0471 0.0116 −0.0666 −0.0070
8 0.6209 0.8678 0.9311 0.9583 0.9611

0.188 0.156 0.160 0.160 0.116
8.64 1.11 0.74 −0.67 17.86
44 44 42 40 42



Fig. 8. Scatter plot comparisons of in situ data to corresponding VIIRS data for several bio-optical products: (A) Chlorophyll-a, (B) total absorption at 410 nm, and (C) total absorption at
443 nm. The plots show higher correlation coefficients for VIIRS at 375-m resolution data (red) to in situ absorption, compared with VIIRS at 750-m resolution (blue).
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Detailed statistics of the chlorophyll-a and other bio-optical product
comparisons to in situ data can be found in Table 2. This comparison
demonstrates that, for this dataset, the VIIRS375m chlorophyll-a satellite
data better represent the in situ data, as evidenced by higher correlation
coefficients and lower RMSE, relative to VIIRS750m chlorophyll-a data. In
addition, Fig. 8A shows that the VIIRS375m sharpening does not intro-
duce any significant outliers when compared to in situ data, and the
low NMB (Table 2) suggests that spectral shape (used as input into
the chlorophyll algorithm) is not significantly altered by the use of the
I1 band to optimize the sharpening scheme. Fig. 8B and C compares
VIIRS750m and VIIRS375m center pixel extractions of QAA absorption
products to absorption values collected during the 2013 NASA GEO-
CAPE mission cruise. These comparisons have a more restrictive time
window (±3 h), and show that VIIRS375m offers significant enhance-
ment of quality in matchups (higher R, lower RMSE, smaller NMB) for
the critical M1 and M2 bands.

As a final assessment of the sharpening algorithm performance, the
enhancement of bio-optical feature detection is evaluated. Moving
beyond simply getting better matchups with ground data, we quantita-
tively examine if there are spatial coastal processes that can be resolved
with 375-m data that are being overlooked at 750-m resolution. This
requires a comparison of satellite data with a high spatial resolution op-
tical data set. A high frequency IOPdatasetwas retrieved fromanunder-
way flow through system connected to a Wetlabs AC-9, courtesy of the
Naval Research Laboratory's R/V Ocean Color cruise on November 20,
2013. The 32-kmcruise track in thenorthern Gulf ofMexico crosses sev-
eral notable frontal features over a three hour period, with the VIIRS
overpass occurring in the middle of this time frame (Fig. 9A). Fig. 9B
shows a comparison between a series of VIIRS750m and VIIRS375m single
pixel extractions of the QAA total absorption (a_443_qaa) product
against a continuous in situ flow through dataset (binned to 375-m)
of total absorption (aT) at 443 nm. The results demonstrate that, close
to the satellite overpass (Fig. 9, b-1, b-2), the relative changes in total
absorption from the in situ data set are more accurately represented
by the VIIRS375m dataset than the VIIRS750m dataset. In this case, small
spatial variability detected by the in situ dataset and the VIIRS375m
Table 2
Summary of statistics comparing in situ derived bio-optical products (chlorophyll-a, total
absorption at 410 and 443 nm) to the corresponding single pixel VIIRS extracted
nLw product at 375-m resolution and 750-m resolution. RMSE is in units of mg/m3 for
chlorophyll-a and m−1 for QAA absorption products. All values of p b 0.001.

VIIRS 375-m sharpened VIIRS 750-m standard

Product chlor_a a_410_qaa a_443_qaa chlor_a a_410_qaa a_443_qaa

Slope 1.0996 0.9487 1.0299 0.9967 0.9535 0.9607
y-int −0.0638 −0.0904 0.0174 −0.1104 −0.2016 −0.0346
R 0.9534 0.8865 0.9504 0.9082 0.8476 0.8680
RMSE* 0.137 0.291 0.094 0.207 0.385 0.150
MNB (%) −0.07 −15.59 7.05 −17.69 −27.99 −12.00
N 8 16 14 8 16 14
dataset are not well-defined by VIIRS750m, presumably because the spa-
tial binning of a 750-m pixel averages over the sub-pixel variability
present (Lee et al., 2012).

Since there arenot any large bio-optical fronts associatedwith absorp-
tion in this dataset, a comparison of in situ total beam attenuation (c) at
551 nmwith satellite derived beamattenuation (c_551_qaa)was also ex-
amined (Fig. 9C). Fig. 9C shows a comparison between a series of VIIRS750-
m and VIIRS375m single pixel extractions of the QAA beam attenuation
(c_551_qaa) product against the continuous in situ flow through dataset
(binned to 375-m) of beam attenuation (c). The figure demonstrates that
many strong bio-optical fronts (Fig. 9, c-1, c-2, c-3, c-4) are better re-
solved with the VIIRS375m dataset. Note that the in situ data on either
end of the plot (8 km and 40 km) represents a time lag of 1.5 h from
when the satellite data was collected, and shows a slight misalignment
of the satellite estimated frontal features. As has been shown previously
by Rantajärvi, Olsonen, Hällfors, Leppänen, and Raateoja (1998), and is
re-iterated by this figure, it is extremely important to closely align the
temporal scales of collected data with that of the satellite measurements,
especially in dynamic coastal waters. These combined datasets clearly
demonstrate that higher spatial resolution data enhance satellite returns
of ocean color in coastal regions.

3.4. Implications for satellite remote sensing

The investigation into improving satellite returns for dynamic water
masses brings to light the challenges associatedwith validation of ocean
color products in coastal regions. In these waters, spatial variability,
rapid temporal changes, and sampling methodology on the ground
can potentially introduce as much uncertainty to a measurement as
that from satellite calibration, atmospheric correction, or geophysical al-
gorithmerrors. Hence, it is useful to improve themonitoring capabilities
of ocean color sensors by enhancing the spatial and temporal scales of
observation, where possible. Near-term planning for the future launch
of operational ocean color sensing systems in currently underway, in-
cluding the design specifications for the NASA PACE (Pre-Aerosol,
Clouds, and ocean Ecosystem) mission, NASA Geostationary Coastal
and Air Pollution Events (GEO-CAPE) mission, ESA Sentinel 3 mission,
and the NOAA Joint Polar-orbiting Satellite System (JPSS-1) mission.
The development of semi-analytical algorithms that enable the exploi-
tation of a single band to enhance the ocean color spectrummay enable
a cost-effective implementation procedure to improve future monitor-
ing from space.

4. Summary

A semi-analytical procedure for the spatial enhancement of ocean
color products in optically complex waters was demonstrated for the
SNPP–VIIRS sensor, providing improved products for resolving coastal
dynamics. This spatial enhancement algorithm utilized the 375-m spa-
tial resolution VIIRS I1 band (640 nm) to sharpen the 750-m M(λ)



Fig. 9. An in situ flow through dataset of IOPs binned to 375-m and compared to VIIRS-derived IOPs at 375-m and 750-m resolution. The map (A) shows the location of the cruise track
corresponding to the plots, below showing that the VIIRS 375-m absorption at 443 nm (B) and beam attenuation at 551 nm (C) dataset more accurately characterizes the coastal waters
and frontal features than the VIIRS 750-m dataset.
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bands. This approach expanded on previous work by Gumley et al.
(2010) to provide atmospherically corrected normalized water leaving
radiance products by spectrally weighting the sharpening algorithm as
a function of the spatial covariance of the VIIRS bands. By spatially map-
pingwhere covariance exists between eachM(λ) band relative to the I1
band, we proportionally adjusted the weight of the I1 band sharpening
more/less in order to optimally refine the derived sub-pixel variability
of the M(λ) bands. This weighting function was applied in order to ac-
count for the spectral dependence of bio-optical variability in natural
systems. This novel approach was designed to reduce spectral artifacts
and prevent the over-extension of the I1 band spatial information
where there is less confidence to do so, such as offshore waters where
the signal to noise ratio of the I1 band is diminished, or where there is
a disparity in the absorption and/or scattering signal across the spec-
trum with varying water types.
The results described here demonstrate that the sharpened VIIRS
375-m dataset 1) did not express sensitivity to band ratio or semi-
analytical algorithms, and 2) significantly increased the quality of
returns for the full nLw spectrum and derived geophysical parameters
(chlorophyll-a, QAA products) in comparison to the 750-m dataset.
The study of dynamic coastal processes can benefit from higher spatial
resolutionmonitoring, as suggested by the large improvements to satel-
lite feature detection that were quantified and validated with a flow
through IOP dataset. Utilizing higher spatial resolution products can
also reduce uncertainties when comparing satellite data to in situ mea-
surements, especially in coastal regions where the scales of variability
are often smaller than the pixel size of many satellite sensors. The ben-
efit of a semi-analytical approach to band sharpening is that is can po-
tentially be applied to other satellite sensors that have wide
bandwidth, high spatial resolution bands.
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