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Abstract: Using a modified geostatistical technique, empirical variograms were constructed 
from the first derivative of several diverse Remote Sensing Reflectance and Phytoplankton 
Absorbance spectra to describe how data points are correlated with “distance” across the 
spectra. The maximum rate of information gain is measured as a function of the kurtosis 
associated with the Gaussian structure of the output, and is determined for discrete segments 
of spectra obtained from a variety of water types (turbid river filaments, coastal waters, shelf 
waters, a dense Microcystis bloom, and oligotrophic waters), as well as individual and mixed 
phytoplankton functional types (PFTs; diatoms, eustigmatophytes, cyanobacteria, 
coccolithophores). Results show that a continuous spectrum of 5 to 7 nm spectral resolution is 
optimal to resolve the variability across mixed reflectance and absorbance spectra. In 
addition, the impact of uncertainty on subsequent derivative analysis is assessed, showing that 
a 3% Gaussian noise (SNR ~66) addition compromises data quality without smoothing the 
spectrum, and a 13% noise (SNR ~15) addition compromises data with smoothing. 
© 2017 Optical Society of America 

OCIS codes: (010.4450) Oceanic optics; (280.1415) Biological sensing and sensors; (110.4280) Noise in imaging 
systems; (070.4790) Spectrum analysis; (330.6180) Spectral discrimination. 
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1. Introduction 

Near-term planning for the future launch of space-borne hyperspectral ocean color sensing 
systems is currently underway, including the design specifications for the National 
Aeronautics and Space Administration (NASA) Plankton, Aerosol, Cloud, ocean Ecosystem 
(PACE) mission, NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) 



mission, NASA Hyperspectral Infrared Imager (HyspIRI), and the German Aerospace Center 
(DLR) Environmental Mapping and Analysis Program (EnMAP). Global hyperspectral 
measurements will have a distinct advantage over multispectral measurements, as the 
synoptic mapping of the fine-scale spectral features of the Earth will enable an unprecedented 
potential to resolve benthic substrate types [1], improve atmospheric correction [2], enhance 
bio-optical retrievals [3], improve monitoring of inland water quality [4], detect harmful algal 
species [5], distinguish specific phytoplankton pigments [6], and enable the simultaneous 
quantification of multiple phytoplankton functional types (PFTs) through spectral inversions 
[7,8] on global scales, all of which ultimately contribute to a better characterization of the 
global carbon budget. 

However, it is noteworthy that higher spectral resolution comes at a cost of reducing the 
signal-to-noise ratio (SNR) of the instrument, as there is less signal (photons) reaching the 
detector(s) when shorter spectral intervals are sampled. This can be compensated for by 
modifying certain engineering parameters in the design of the sensor, but can subsequently 
have an adverse impact on the quality of satellite retrievals, as well as the cost and complexity 
of a mission. For example, increased SNR in hyperspectral measurements can be obtained by 
reducing the spatial resolution (i.e. larger ground sampling footprint) to allow more photons 
into the sensor and increase the signal, but this can also introduce additional uncertainty as a 
result of subpixel variation in bio-optical properties [9]. Alternatively, reducing the dynamic 
range of the detector(s) optimizes the sensor’s ability to detect a given range of photon 
densities, but can lead to saturation or non-detection of radiance signals if this range is too 
narrow and may require multiple gain settings [10]. Therefore, it is necessary to quantify the 
optimal spectral sampling frequency in order to maximize the quality and efficacy of data 
retrievals. 

Previous studies analyzing the spectral requirements for ocean color remote sensing [11–
14] presented in the context of retrieving primary ocean color variables (e.g. chlorophyll-a, 
absorption, backscattering) generally conclude that a 10 nm continuous spectrum or 13-17 
discrete bands are sufficient for resolving most ocean color features. However, when 
examining these requirements in the context of detecting subtle spectral features that require 
derivative analysis to extract, there can be significant improvements to PFT distinction, for 
example, by using a 4 nm [15] or 5 nm [16] continuous spectrum. Varying methodologies as 
well as data set origins yield some discrepancy among recommendations for spectral band 
requirements [14], and can be dependent on specific applications (e.g. detection of specific 
products or PFTs). This study intends to add to the existing body of work by testing a new 
methodology to quantify the optimal spectral resolution and noise thresholds required to 
discern subtle spectral features that may be important for PFT algorithm development or other 
applications over a variety of water-types. 

2. Methods 

2.1 Data collection 

Hyperspectral data were collected from multiple sources to simulate a highly idealized 
environment (phytoplankton absorbance from filter pad-based optical density, ODf, obtained 
on various cultures), as well as realistic environments with complex optical features 
(phytoplankton absorption, aph, and above water remote sensing reflectance, RRS) from field 
measurements. These data were the basis for subsequent statistical analysis to help address 
the optimal spectral resolution at which spectral peaks and valleys can be resolved, as 
described in section 2.2. In order to ensure that the complete characterization of the spectral 
shape of peaks and valleys, data were collected at the highest available spectral resolutions. 

Above-water remote sensing reflectance measurements at < 3 nm spectral resolution 
(sampled at 1 nm) were taken using Analytical Spectral Device (ASD) FieldSpecTM 
Spectroradiometers with a 10° field of view foreoptic attached. These instruments enable the 
derivation of above-water RRS using un-calibrated radiance of the water (Ssfc) and sky (Ssky), 



corrected for Fresnel reflectance (ρ = 0.028) [17], relative to reflectance plaque measurements 
(Sg). The reflectance plaque is a 10% gray card with a known bi-directional reflectance 
function (Rg), and is assumed to be a semi-Lambertian surface. The optical sensor zenith 
angles for the water (θsfc), grey card (θg), and sky (θsky) measurements are 135°, 135°, and 
45°, respectively. The relative azimuth angle of the sensor to the sun (φ) was 135°. Remote 
sensing reflectance is computed following protocols from Fargion and Mueller [18]: 

 
( ) ( )

( ) ( )/
sfc sky

RS
g g

S S
R

S R

λ ρ λ
π λ λ

−
=  (1) 

Data were collected over three years (2012–2015) from various locations [Fig. 1], 
including the turbid Mississippi River plume (4 spectra, average chlorophyll-a = 6.18 ± 2.58 
μg L−1), coastal waters of the Gulf of Mexico/U.S. East Coast (4 spectra, average chlorophyll-
a = 1.40 ± 0.47 μg L−1), shelf waters from the Gulf of Mexico/U.S. East Coast (4 spectra, 
average chlorophyll-a = 0.59 ± 0.09 μg L−1), the Gulf stream (4 spectra, average chlorophyll-
a = 0.27 ± 0.09 μg L−1), the Bahamas (4 spectra, average chlorophyll-a = 0.19 ± 0.03 μg L−1), 
and a Microcystsis bloom in Lake Erie (1 spectrum, chlorophyll-a = 124.23 μg L−1). The RRS 
values were smoothed in 1 nm increments with a 5 nm boxcar Gaussian-weighted smoothing 
filter to avoid noise artifacts, and then segregated according to spectral shape and normalized 
to the maximum value in each category before running the statistical analysis, to ensure that 
higher magnitude reflectance spectra did not bias the results. A Gaussian-weighed boxcar 
smoothing filter was chosen to help minimize the potential dampening of spectral patterns, as 
more weight is given to the center value of the 5nm window and less so to the direct 
neighboring values. 

 

Fig. 1. Locations of above-water remote sensing reflectance measurements collected from an 
ASD radiometer. The corresponding range of HPLC-derived chlorophyll-a concentrations at 
each station are displayed in the legend, showing a diverse range of water types that were 
sampled. 

For phytoplankton absorbance data, four cultures (Nannochloropsis sp., Thalassiosira 
weissflogii, Emiliana huxleyi, Synechococcus sp.) were grown under simulated sunlight 
conditions, and filtered onto GF/F filter pads. A mixed culture was obtained for spectral 
analysis by combining equal volumes of the dense cultures into a diluted seawater medium. 
The spectra were analyzed on an Agilent Cary 4000 spectrophotometer equipped with an 
integrating sphere (Labsphere DRA-CA-900). The filters were held in the center of the 
integrating sphere using jaw mount and a Plexiglas slide [19]. Data were gathered from a 
spectral range of 342–750 nm, at 0.3125, 0.625, 1.00, and 5.00 nm respective Slit Band Width 



(SBW) and data intervals. For lab-based absorbance analysis, blank-corrected filter pad-based 
optical density ODf values are utilized for statistical analysis of variability, since the 
corrections to obtain absolute absorption values would make minimal difference to the 
spectral shape. The ODf values presented graphically are normalized to the maximum value 
for inter-comparisons between different PFTs, however, the maximum ODf values were 0.245 
m−1 Nannochloropsis sp., 0.159 m−1 for Thalassiosira weissflogii, 0.194 m−1 for Emiliana 
huxleyi, 0.123 m−1 for Synechococcus sp., and 0.180 m−1 for the mixed assemblage. 

Based on findings from our field RRS and laboratory ODf experimental data, we chose a 
third independent data source to check the consistency of our results through a comparative 
analysis of phytoplankton absorption (aph) that was performed on a subset of natural seawater 
samples collected on a GF/F filter pad along the Yellow Sea/Korean Strait, from the GOCI 
validation field campaign (2013-09-27 to 2013-10-02). The extraction protocol was based on 
Kishino et al. [20] using two consecutive extractions of 95% methanol/5% ultrapure water. 
These samples were measured on an Agilent Cary 4000 spectrophotometer equipped with an 
integrating sphere (Labsphere DRA-CA-900). Scans were performed between 290 and 850 
nm with a 2 nm SBW and 0.2 nm data interval. Particulate and detrital absorption (ap and ad) 
were computed using the pathlength amplification correction (β) from Stramski et al. [21], 
and aph was determined by the subtraction of ad from ap. These data were compiled from the 
NASA SeaBASS data archive (https://seabass.gsfc.nasa.gov/). 

2.2. Statistical analysis 

Variogram analysis is a geo-statistical technique that has been used to determine the optimal 
frequency of spatial sampling (i.e. spatial resolution) for resolving bio-optical processes in 
various water types [22–24]. In this study, the use of the empirical variogram is extended to 
analyze the minima and maxima of the (de-trended) first derivative of spectral data, 
essentially treating spectral data in the same manner as spatial data. The fundamental concept 
of the empirical variogram, γ(h), is to quantify how data are related (correlated) with 
“distance”: 
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where h is spectral distance between locations i and j (e.g. 1 nm), N(h) is the number of all 
possible pairwise distances (e.g. all instances of 1 nm separation), zi and zj are the data values 
at locations i and j, respectively. 

The empirical variogram is a measurement of the average squared difference between data 
separated by distance h, and each average(h) is a point on the variogram [Fig. 2(a)]. The 
calculation proceeds for all distances, h = 1 nm, 2 nm, 3 nm… 50 nm. At some point, the 
variance measured at different distances (spectral resolutions) reaches a maximum, indicating 
the data are no longer auto-correlated, and this point represents a measurement of the variance 
of the random field (the sill, σn

2, [Fig. 2(a)]. The range, a, describes the distance at which data 
are not auto-correlated, and the nugget (cn, y-intercept) represents the uncertainty, or micro-
scale variations in the data, or both [25]. The variogram can be mathematically represented by 
one of several models depending on the data structure. In this case, the data were best 
represented by a Gaussian curve: 
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Fig. 2. (A) Empirical variogram performed on the first derivative of spectral phytoplankton 
absorbance data. Note the relative “flattening” of the tail at the origin of the Gaussian curve. 
This feature is exploited to gain the maximal rate of information gain, as seen in (B). This 
distance, or spectral resolution, at which dγ(h)/dh is maximized is interpreted as the optimal 
spectral sampling frequency. 

Note that the variance decreases significantly as h approaches zero [Fig. 2(a)], i.e. the 
curve flattens out and little information is gained with every nanometer increase in spectral 
resolution. This “flattening” suggests that the minimum resolution of the spectral data is 
sufficient to resolve the variability of the underlying patterns. The degree to which this 
variance changes with every nm increase in resolution will change as a function of the 
kurtosis of the Gaussian curve. To quantify this, the rate of change in variance, dγ(h)/dh, can 
be plotted as a function of spectral resolution, emphasizing the sampling frequency at which 
more/less information is gained [Fig. 2(b)]. The maximum value of this plot shows the 
location of the maximum rate of information gain. Below this point (higher spectral 
resolution), there is less relative information gained per nanometer of spectral resolution 
increase, which indicates that increasing the spectral resolution (at the potential cost of 
reduced SNR) beyond dγ(h)/dh MAX may not be an optimal sampling design. This maximal 
value was used to determine the optimal spectral sampling frequency across discrete segments 
of the UV/visible/NIR spectra. 

For each individual spectrum measured, a series of empirical variograms (and subsequent 
analyses, as described above) were constructed from at least 50 nm discrete segments of data 
across a spectral range of 375–725 nm. For the phytoplankton absorbance spectra derived 
from laboratory cultures, these 50 nm windows used to run the statistical analysis were 
centered and sampled in 25 nm increments (e.g. 375–425 nm, 400–450 nm, 425–475 nm … 
675–725 nm), ensuring the entire spectral range of data were covered and slightly 
oversampled. The RRS variograms were also constructed from 50 nm windows of data, but 
were sampled at 15 nm increments (e.g. 375–425 nm, 390–440 nm, 405–455 nm … 675–725 
nm). The RRS data were sampled at higher incremental frequency due to increased likelihood 
of overlapping peaks in a mixed natural assemblage. Results are reported in this manuscript 
as the center wavelength of each 50 nm window. Relatively large intervals, N(h), are used for 
this analysis to ensure that sufficient data points exist to yield robust statistical results. As a 
general rule of thumb, a minimum of 30 pairs should be examined when calculating empirical 
variograms, as an increase in data points enhances the accuracy of variogram estimates. The 
minimum number of pairs that can be examined to yield a reliable variogram estimate is 
equivalent to half of the maximum distance of the field [26]. In this case, 50 nm is the 
maximum distance of the field, therefore the information retrieved from variograms is less 
reliable at resolutions of 25 - 50 nm, and more reliable at 1 – 24 nm. 

It should be noted that not all variance is resolved at the maximal point of dγ(h)/dh that is 
calculated from each spectrum. Since the value of γ(h) at any given point represents the 
variance at a corresponding spectral resolution, a ratio of this value against the sill (total 



variance of the random field) represents the relative percentage of total resolved variance at 
that resolution. This was computed at γ(h) points corresponding to the maximal point of 
dγ(h)/dh at each sampling increment in this analysis to quantify how much total variance is 
resolved at the optimal sampling frequency. 

In addition, a sensitivity analysis was performed on the full analyzed spectrum (375–725 
nm) of the 21 RRS spectra (converted to normalized water leaving reflectance), in order to 
assess how much noise can be added to the spectra before the utility of the data is 
compromised, and thus examine the viability of using derivative-based algorithms with 
potentially noisy satellite data. The sensitivity analysis is performed by adding 0.25% 
increments of Gaussian white noise and identifying the noise level at which γ(5nm) = γ(10 
nm) over the whole spectrum. This is essentially a measure of when 5 nm data is not 
distinguishable from 10 nm data, therefore a 10 nm continuous spectrum has as much utility 
as a 5 nm continuous spectrum. This analysis is performed again after performing a Savitsky-
Golay smoothing function with a polynomial order of 4 and frame size of 13 (chosen as the 
closest proxy between 10 and 15 nm smoothing). The Savitsky-Golay filter is frequently used 
for derivative analysis and was chosen for its capacity to preserve relative minima and 
maxima inflections in the spectrum [27]. 

3. Results 

3.1 Phytoplankton absorbance/absorption 

The absorbance of one phytoplankton species (Thalassiosira weissflogii) at different spectral 
resolutions (0.3125, 0.625, and 1.00 nm) yielded near-identical variogram results, at the cost 
of increased noise sensitivity (higher nugget effect and data scatter) with increased spectral 
resolution [Fig. 3]. The absorbance from four separate phytoplankton species, including one 
diatom (Thalassiosira weissflogii), one eustigmatophyte (Nannochloropsis sp.), one 
cyanobacteria (Synechococcus sp.), one coccolithophore (Emiliana huxleyi), and one mixed 
culture with all four species, encompasses spectral variability scales which include a variety 
of overlapping pigment peaks, including phycocyanin, phycoerythrobilin, phycoerythrin, 
chlorophylls, carotenoids, etc. [Fig. 4(a)]. The optimal spectral sampling frequency was rarely 
greater than 7 nm spectral resolution for individual or mixed cultures, and was as low as 15 
nm spectral resolution [Fig. 4(b)]. On average, the percent resolved variance at the optimal 
spectral sampling frequency was 74 ± 3% for Thalassiosira weissflogii, 78 ± 6% for 
Nannochloropsis sp., 72 ± 3% for Synechococcus sp., 72 ± 5% for Emiliana huxleyi, and 74 ± 
4% for the mixed assemblage. As a point of reference for comparison, an analysis run on nine 
natural seawater samples [Fig. 4(c)] with higher spectral sampling (0.2 nm) spanning a 
spectral range of 400–480 nm and 600–680 nm (areas with highest suggested spectral 
sampling frequency from Fig. 4(b)), yielded an average optimal resolution of 7.0 ± 0.4 nm 
(90 ± 6% resolved variance) and 6.5 ± 0.3 nm (84 ± 6% resolved variance), respectively. 

 

Fig. 3. The first derivative of empirical variograms run on different resolutions of data from 
one phytoplankton absorption sample across the entire integrated spectrum (342–750 nm). The 
theoretical variogram (red line) helps resolve variability in presence of noise, yielding near-
identical results between resolutions. 



 

Fig. 4. (A) Continuous 1 nm resolution spectra of four species of phytoplankton used in this 
analysis, Thalassiosira weissflogii (THAL), Synechococcus sp. (SYNEC), Nannochloropsis sp. 
(NANO), Emiliana huxleyi (EHUX), representing a diverse collection of pigment expressions. 
(B) The corresponding dγ(h)/dx max in 25 nm increments, indicating the optimal spectral 
resolution at which the most information is obtained within each increment. Results show most 
features are resolved between 6 and 15 nm spectral resolution. (C) Phytoplankton absorption 
from natural assemblages collected from the Korean Strait, highlighting the areas with the 
highest frequency of absorptions peaks/inflections. Within these highlighted ranges, the 
optimal spectral frequency is around 6.5-7.0 nm. 

3.2 Remote sensing reflectance 

The analysis of remote sensing reflectance derived from six distinct water types, ranging from 
turbid freshwater/coastal waters to blue, oligotrophic waters showed that most spectral 
features were optimally resolved at a spectral resolution of 4–15 nm [Figs. 5(a)-5(f)], 
depending on the location within the spectrum and water type. At the defined spectral 
resolutions within the figures, this accounts for 60–87% of the total resolved variance. 

In the case of the turbid monoculture Microcystis bloom, most features were resolved with 
a 6 nm continuous spectrum, with some sloping portions of the spectrum tolerating >12 nm 
spectral resolution [Fig. 5(a)]. The coastal and shelf waters along the Gulf of Mexico/U.S. 
East Coast show a spectral sampling frequency of 5 nm may be required to optimally resolve 
the spectral features centered around 685 nm [Figs. 5(c) and 5(d)]. The analysis shows that 
the same regions in the low-signal oligotrophic Gulf Stream and Bahamas water [Figs. 5(e) 
and 5(f)], as well as the high-signal Microcystis and turbid river plume waters [Figs. 5(a) and 
5(b)] are optimally resolved with a 6 nm semi-continuous spectrum. 

Other persistent features included a region of spectral sensitivity (4 – 5 nm spectral 
sampling frequency) centered around 535 nm, which was present in all the spectra, besides 
the Microcystis bloom [Figs. 5(b)-5(f)]. Two other notable features include a region in the 
coastal green water [Fig. 5(c)] centered around 625 nm that suggests an optimal spectral 
sampling frequency of 4 nm, in addition to a spectral feature centered at 475 nm appearing in 
the oligotrophic Gulf Stream and Bahamas water [Figs. 5(e) and 5(f)], which shows an 
optimal spectral sampling frequency of 5 nm. With a few exceptions, the remainder of the 
spectral features in all natural waters typically require less than 10 nm spectral resolution to 
optimally resolve the underlying spectral features. 



 

Fig. 5. Continuous 1 nm spectra and corresponding bar graphs (below) indicating the optimal 
spectral sampling frequency (dγ(h)/dh maximum; bars) as well as the percent resolved variance 
(dots + line) at given band centers for varying water types. The blue boxes highlight regions 
that are optimally resolved at 5 nm or less. Water types: (A) One Microcystis bloom spectrum 
collected from Lake Erie, MI., (B) Four spectra from the turbid river plume waters of the Gulf 
of Mexico, (C) Four spectra from green coastal waters in the Gulf of Mexico and U.S. East 
Coast, (D) Four spectra from the shelf waters in the Gulf of Mexico and U.S. East Coast, (E) 
Four spectra from the open blue waters of the Gulf Stream along the U.S. East Coast, and (F) 
Four spectra from clear oligotrophic waters in the Bahamas. 



3.3 Spectral noise thresholds 

Assuming a 5 nm continuous spectra as a baseline for hyperspectral satellite missions, 
incremental Gaussian noise additions made on all 21 normalized water leaving reflectance 
spectra show that only ~3% noise could be tolerated before 5 nm (first derivative) data 
resolves the same amount of variability as 10 nm (first derivative) data [Fig. 6(b)] over the 
entire integrated visible spectrum. For these spectra, the 3% noise addition equated to an SNR 
of approximately 66. Since it is a common practice to utilize smoothing techniques prior to 
performing derivative analysis, a 13 nm Savitsky-Golay smoothing function was applied after 
each increment of noise, bringing the noise threshold up to approximately 13% [Fig. 6(c)]. 
Across the entire visible spectrum and across all water types, this equated to an average SNR 
of approximately 15. Using a 15 nm mean boxcar filter, the threshold was increased to nearly 
20% (not shown), however, there were severe aberrations to the original spectrum, including 
a spectral shift in peaks. 

 

Fig. 6. (A) A single differential normalized reflectance spectrum (green line) taken from shelf 
waters of the Gulf of Mexico [Fig. 5(d)], shows aberrations after adding 3% Gaussian noise, 
with and without smoothing (black and red lines, respectively). Below, the ratio of γ(5 nm) to 
γ(10 nm) at incremental Gaussian noise additions is calculated for all spectra, indicating the 
threshold at which the variability of first derivative reflectance data at 5 nm spectral resolution 
meets or exceeds the variability of first derivative reflectance data at 10 nm spectral resolution, 
e.g. γ(5 nm)/γ(10 nm) = 1. (B) Without any spectral smoothing, the noise threshold is at ~3%. 
(C) With a Savitsky-Golay spectral smoothing function, this threshold is extended to 13%. 

4. Discussion 

The principle objective of this research is to evaluate the frequency of spectral sampling 
required to resolve subtle spectral features contained in hyperspectral data sets, in addition to 
nominally evaluating the efficacy of expected data product quality based on expected sensor 
performance. It is recognized that the data sets used for this analysis do not represent an 
inclusive measure of global ocean environments, however, this does not preclude the 
significance of results, as the data still represent diverse examples of bio-optical variability 
that will be detected by future ocean sensors. While further investigation is required to 



expand the implications for deriving various ocean parameters in a wider range of natural 
environments, the methodology presented in this manuscript is adaptable in nature and can be 
applied to any high spectral resolution data set to determine optimal sampling frequency. 

It should be understood in the interpretation of results that a first-order derivative 
transformation of the data increases the sensitivity of the analysis. The original, non-
transformed data do not have enough of a signal over narrow spectral windows for the 
variogram technique to be useful, so the features were exaggerated with the use of a first 
derivative. This means, at 1 nm spectral sampling, a single peak is transformed into two peaks 
after the first-derivative, three peaks after the second derivative, etc. creating a higher spectral 
sampling frequency with every consecutive derivative. Therefore, the spectral sampling 
frequency obtained from the statistical analysis of the first derivative is relevant to accurately 
re-constructing the shape of spectral inflections, not just capturing the location of peak 
maxima/minima. This may not be a high priority for all applications, but is potentially 
important to resolving spectral features where absorption peaks may overlap closely, 
especially in waters with mixed phytoplankton community compositions, or, for resolving 
shifts in spectral peaks. The use of 2nd and 4th derivative analysis can be used to further 
accentuate these peaks, however, the application of the empirical variogram technique to 
higher order derivatives would yield frequency information required for the hyperbolic 
reconstruction of the absolute spectral shape of a high order differential spectra, an 
application which may be excessive when considering the optimization of sensor design. 

Additionally, in examining these results, it is noteworthy that there is some inherent 
limitation associated with the absolute resolution of the radiometric instrumentation to be able 
to detect narrow spectral features. While a 3 nm (or wider) bandwidth sampled at 1 nm could 
feasibly retrieve a signal from a 1 nm wide spectral feature (if the signal is strong enough), it 
is possible that such a feature would not be incorporated into the variogram analysis. 
Regardless, each variogram analysis consistently showed an increase in resolved variance as a 
function of increased the spectral resolution, down to the 1 nm sampling frequency [Fig. 
2(a)]. In other words, while the ASD sensor may measure at a larger spectral bandwidth than 
the absolute width of a given feature, the variogram still shows a reduction in variance (gain 
in spectral information) at 1 nm relative to 3 nm sampling intervals. However, this analysis is 
not intended to examine the exact resolution required to detect all spectral features present, 
per say, it is otherwise designed as a method to determine the optimal spectral resolution. The 
variograms are cast over a wide spectral window (50 + nm), examining the rate at which the 
highest amount of information is gained, on average, over this spectral window. Even with 
multiple 1 nm features present, for instance, the variogram would not likely display 1 nm as 
the optimal spectral resolution. There is some corroboration that 1 nm spectral features are 
not ubiquitous, as the laboratory-based absorbance measurements (absolute resolution 1 nm 
or less) did not show features present at 1 nm among multiple PFTs [Fig. 3(a)], however, 
absorbance is only one dimension of a multi-faceted in situ or satellite-based reflectance 
measurement. Finally, we note that other derivative analysis in the literature specifically 
aimed at extracting information on PFTs and pigments [6,14] have utilized a 9 nm smoothing 
and band separation function to yield positive distinction of PFTs and/or pigments, therefore, 
the resolution and smoothing functions used in this study are likely relevant to these 
applications. 

Based on this interpretation, several of the natural water spectra show that there are 
instances at which 5-6 nm spectral resolution may be required in order to fully resolve the 
various inflections within the spectra, such as around the chlorophyll fluorescence peak (~680 
nm) in the reflectance data [Figs. 4(b)-4(d)]. While a relatively broad peak (~20 nm wide), a 
sampling frequency of 10 nm would only enable the capture of the relative magnitude of the 
peak, and makes a critical assumption that this peak location is static. However, fluorescence 
peaks have been known to shift by several nanometers, especially in waters with high 
concentrations of chlorophyll [28,29]. This suggests that in some instances, an even finer 



spectral resolution than 5 nm could be useful to detect the true maxima of the fluorescence 
peak. In contrast, the absorbance data from the laboratory cultures do not include 
fluorescence and exhibit much broader absorption peaks in the red (650 – 700 nm) that are 
optimally resolved with 10 nm resolution, with the exception of the chlorophyll absorption 
peak seen in the Nannochloropsis culture, which may require a slightly higher sampling 
frequency (~7 nm) compared to other cultures in order to characterize the slightly irregular 
shaped peak [Fig. 3]. 

Elsewhere in the absorption and reflectance data, there are several instances of spectral 
variance on the order of 4-6 nm, such as around 625 nm, where multiple overlapping peaks 
and concentrations of chlorophylls-a,b,c are present over a broad spectral range, or around 
425 – 500 nm, where multiple chlorophyll, photo-protective, and carotenoid pigment 
absorption peaks overlap [30]. There are also regions in the spectra which exhibit high 
spectral variance, but which are not traditionally recognized as significant to ocean color. For 
instance, a high amount of spectral variance centered at ~535 nm (510 – 560 nm) was 
common to most all reflectance spectra. While this is a region of strong phycoerythrobilin 
pigment absorption as well as cyanobacteria reflectance, it is unlikely ubiquitous in all the 
water types sampled. Since the nature of the variogram analysis requires large spectral 
windows (at least 50 nm window at 1 nm spectral resolution) to gain enough signal, there are 
likely a combination of spectral features spanning this window that are integrated into the 
results. This is supported by observations by Torrecilla et al. [6] showing that the 495 – 540 
nm window has been recognized as a distinctly useful spectral region for discriminating 
phytoplankton pigment assemblages in open ocean waters. While the analysis is highly 
sensitive to spectral variability, the exact locations of these inflections within the 50 nm 
spectral window are more difficult to pinpoint with variograms, and are better resolved with 
studies examining zero-intercepts of the first and second derivative [13,14,16]. 

Results derived from independent analysis specifically aimed to determine the spectral 
resolution required for PFT and/or phytoplankton pigment distinction are generally in line 
with the suggested optimal resolutions which are concluded from this study (5 – 7 nm), 
however, as previously mentioned, there is some discrepancy in the literature among specific 
recommendations for spectral resolutions. For instance, results from Roelke et al. [15] suggest 
a slightly higher spectral resolution than presented in this study, showing that the distinction 
of chlorophyll-a and chlorophyll-b peaks in green algae composite absorption data begin to 
deteriorate at 5 nm and 7 nm spectral resolutions, respectively. Wolanin et al. [16] focused on 
the distinction of three specific PFTs, and showed a small improvement of results when 
increasing from 10 nm to 5 nm continuous spectral resolution, and even less improvement 
when increasing from 5 nm to 1 nm spectral resolution. By contrast, Lee et al. [13] used 1st 
and 2nd derivative analysis to suggest 17 strategically placed bands based on the highest 
frequency of peak occurrences on over 400 spectra, however, this is optimized for the 
detection of the most frequently occurring peaks, and can change with variability of the data 
sets, potentially neglecting the detection of signal at the cost of reducing redundancy. The 
focus of this study is not to assign attribution of individual peak signals or detect specific 
PFTs, per say, but to present an unbiased methodology to detect the frequency of spectral 
inflections across the any region of the electromagnetic spectrum, regardless of the source of 
the signal. The adaptive nature of continuous hyperspectral data enables users to determine 
which bands are most important for specific applications, but it is imperative to first ensure 
that these spectral features are being detected with a reasonable SNR that will enable viable 
retrievals of downstream product applications. As suggested by Wolanin et al. [16], some 
redundancy in spectral information can increase the adaptability of data across multiple 
algorithms and water types. 

The afore mentioned sensitivity of the empirical variogram analysis to variability makes it 
a useful tool to additionally quantify the impacts of noise on spectral signatures. This analysis 
showed that data viability for derivative analysis is compromised when only ~3% noise is 



introduced (SNR ~66), however, this was significantly alleviated by smoothing the spectrum, 
which is a common treatment for derivative analysis. This finding is in line with a previous 
study of SNR in which an analysis of 2,500 absorption spectra containing mixed 
concentrations of Prorocentrum minimum and other algae showed that an SNR of ~34 was 
sufficient to properly distinguish and classify P. minimum as a dinoflagellate (≥ 80% 
chlorophyll contribution) using 4th derivative analysis [15]. Various methods of smoothing 
can be implemented to reduce the possibility of leveling spectral features [31] beyond that 
used in this experiment, and may be useful for further reducing instrument noise effects. 

Currently, the uncertainty thresholds for the NASA PACE mission are defined for 
normalized water leaving reflectance (mW cm−2 μm−1 sr−1) as 5% or 0.001 from 400 – 600 
nm, and 10% or 0.005 from 600 – 900 nm. The PACE Ocean Color Instrument (OCI) is 
projected to nominally sample at a spectral resolution of 5 nm, and with careful smoothing 
procedures, the current design for the PACE OCI should provide useful hyperspectral 
derivative data for use in PFT algorithm development and improved ocean color products. It 
should be noted, however, that this analysis is focused on the resolution required to detect 
ocean-specific features from in situ and laboratory data, but does not take into account very 
narrow spectral features introduced from vibrational Raman scattering and Fraunhofer Lines 
[32] or other spectral features that a satellite sensor will be subject to at the top of the 
atmosphere, such as absorbing gases [33], which can introduce uncertainty in retrievals and 
may require higher spectral resolution to correct for. 

5. Conclusions 

This study aimed to quantify the optimal spectral resolution and signal to noise thresholds 
required to discern subtle spectral features across various water types and phytoplankton 
functional groups. The results indicate that a continuous 5 nm spectrum with less than 13% 
uncertainty in the ocean signal is optimal in the resolution of ocean color variability from in 
situ derived remote sensing reflectance, with some regions of the spectrum potentially 
benefiting from enhanced spectral subsampling which would account for spectral shifts in 
peak maxima (e.g. chlorophyll fluorescence). At a 5 nm continuous spectral sampling 
frequency, the signal to noise ratio of the sensor will likely be the ultimate limiting factor for 
distinguishing fine scale peaks, but may be mitigated with various statistical smoothing 
techniques. 
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