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Abstract: Passive remote sensing of the Earth system has used spatial 
resolutions ranging from meters to kilometers. It is thus necessary to 
understand how data products with different spatial resolutions can be 
compared with each other, and how sub-pixel variations may affect data 
comparison. This is particularly important for ocean color remote sensing 
where the measured signal (water-leaving radiance or remote sensing 
reflectance) is a non-linear function of sub-surface constituents. As a result, 
products at low resolution are not necessarily arithmetic or geometric 
means of those at higher resolution. Here, we developed analytical 
expressions to link ocean color properties derived from high- and low-
resolution data, and the proof-of-concept is further demonstrated with both 
simple examples and measurements of MERIS full-resolution (FR) and 
reduced resolution (RR). These results suggest that current global 
chlorophyll concentration is likely underestimated due to the coarse spatial 
resolutions. Application of the expressions will facilitate cross-sensor 
comparisons and may also reduce uncertainties. 

©2012 Optical Society of America 
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1. Introduction 

Remote sensing plays an indispensable role for the acquisition of geophysical information of 
large areas. These missions employ various platforms including aircraft and satellites, with 
sensors measuring the Earth’s surface at resolutions ranging from sub-meters to kilometers. 
For instance, an image pixel from the WorldView 2 satellite measurement has a size of ~1.5 x 
1.5 meter (high spatial resolution), while a pixel from Hyperion or Landsat measurement is 
~30 x 30 m, and a pixel from the Moderate-resolution Imaging Spectroradiometer (MODIS) 
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or the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurement is ~1000 x 1000 m 
(medium spatial resolution). Thus, one MODIS pixel encompasses ~33 x 33 Hyperion or 
Landsat pixels and ~660 x 660 WorldView 2 pixels. The high-resolution measurements 
provide detailed information for a targeted area, while the low-resolution measurements 
provide synoptic information over larger areas. On the other hand, this spatial mismatch 
produces difficulties in comparing products measured with different spatial resolutions when 
the target is inhomogeneous [1, 2]. For a spatially homogeneous environment, it is easy to 
visualize that the product of a unit area (e.g., absorption coefficient, concentration of 
chlorophyll) of a low-resolution pixel is equivalent to the product of any pixel of high-
resolution pixels encompassed by the low-resolution pixel. For a spatially inhomogeneous 
environment, the situation becomes complex. For information mainly generated from a 2-
dimensional (horizontal) domain such as surface temperature or Earth surface albedo [3], 
normally an arithmetic mean of the high-resolution measurements can represent the low-
resolution measurements. For ocean color remote sensing, however, because of its 3-
dimensional (horizontal and vertical) characteristics, it is not known if this arithmetic mean is 
still representative. For instance, for vertically stratified waters, the remotely observed 
property is not a simple arithmetic mean of its vertical profile, but a weighted mean with the 
weight decreased exponentially with increasing depth [4–6]. The same argument also applies 
to horizontally inhomogeneous waters (see Fig. 1 for instance): although the water-leaving 
radiance from a low-resolution pixel is an arithmetic mean of those from the corresponding 
higher-resolution pixels, the non-linear nature of the dependence between water-leaving 
radiance and sub-surface constituents makes it non-straightforward to extend the “averaging” 
concept to the retrieved data products. This raises the question of how best to compare 
products measured with different spatial resolutions? The same question is also raised in 
planning field measurements for the validation of remote sensing products [2], where discrete 
point measurements are used to compare with the synoptic data from the remote sensing 
estimates. 

Based on established radiative transfer models for ocean color remote sensing, this short 
letter addresses these questions for water and bottom properties, with the ultimate objective of 
providing an analytical solution for comparing products at different resolutions. In addition, it 
tries to provide an easy understanding of low-resolution product for spatially inhomogeneous 
environments. Because of the particular importance of sub-pixel variations in optically 
shallow waters where the bottom contributes to a significant amount of satellite signal, we 
address these questions for two distinctive environments: optically deep and optically shallow 
waters. 

 

Fig. 1. (left) A pixel observed by a low-resolution sensor; (right) Pixels observed by a high-
resolution sensor, corresponding to the low-resolution pixel. 
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Optically Deep waters 

After radiometric calibration and atmospheric correction, the fundamental property of ocean 
color remote sensing is the remote sensing reflectance (Rrs, sr−1), which is used for the 
derivation of subsurface properties [7, 8]. Rrs is defined as the ratio of water-leaving radiance 
(Lw, mW cm−2 µm−1 sr−1) to downwelling irradiance just above the surface (Ed, mW cm−2 
µm−1). For optically deep waters, Rrs can be expressed as [9] (a more detailed review is 
provided in Lee et al [10]) 

 0 1 .b b

b b

b b
Rrs G g g

a b a b

 
= + + + 

 (1) 

Here G is a dimensionless parameter representing the cross-surface effect [11, 12], g0,1 (sr−1) 
are model coefficients and they are constants for a given water body and sensor-sun 
geometry; a (m−1) and bb (m−1) are the absorption and backscattering coefficients, 
respectively. a is composed of the contribution of pure seawater, phytoplankton pigments, 
colored dissolved organic matter (CDOM), and detrital particles; while bb is composed of 
contribution of pure seawater and suspended particulates [12]. 

For Rrs of a low-resolution pixel (RrsLo), Eq. (1) becomes 

 0 1 ,
Lo Lo

Lo b b
Lo Lo Lo Lo

b b

b b
Rrs G g g

a b a b

 
= + + + 

 (2) 

where aLo and bb
Lo are the “effective” absorption and backscattering coefficients of the pixel. 

Here the term “effective” refers to the perceived optical properties that make up RrsLo. 
Now consider n high-resolution pixels that make up the low-resolution pixel. For each 

RrsLo, because the downwelling irradiance on each high-resolution pixel is virtually the same, 
RrsLo is the arithmetic mean of RrsHi from the n high-resolution pixels, 

 ( ).Lo HiRrs Rrs i=  (3) 

Here i represents the high-resolution pixel index. Because Rrs is not proportional to a (rather 
to 1/a in general), Eqs. (1-3) indicate the following is generally true: 

 ( ).Lo Hia a i≠  (4) 

It is then desired and important to know what aLo means for spatially inhomogeneous waters, 
especially when satellite products are compared with field data [13–16] or when satellite 
products with different spatial resolutions are compared with each other. 

For easier derivation and explanation, we use the following simplified model [11] to 
describe the relationship between Rrs and a and bb, 

 ' ,bb
Rrs g

a
≈  (5) 

Here parameter g’ includes both cross-surface effects as well as the modeling coefficients 
between Rrs and inherent optical properties (IOPs; a and bb, in particular). Then, the 

arithmetic mean of RrsHi(i) becomes the arithmetic mean of 
( )

( )
bb i

a i
; and from Eq. (3), there is 

 
( )

' ' .
( )

Lo Hi
b b
Lo Hi

b b i
g g

a a i
≈  (6) 
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Because g’ is relatively stable [9, 11] and considered not to vary significantly within the high-
resolution pixels, the above relationship is reduced to 

 
1

( )1
.

( )

Lo Hi
nb b

Lo Hii

b b i

na a i=
≈   (7) 

Simple algebraic manipulations lead to 

 ( )
1

1

1 1,

( )
.

( ) ( )

nLo Hi
bLo i

nn Hi Hi
bi j j i

n b a i
a

b i a j

=
−

= = ⊄

≈ ∏
 ∏

 (8) 

Here 1
1, ( )n Hi

j j i a j−
= ⊄∏  represents multiplication of all aHi except aHi(i) when bb

Hi(i) is used. 

Further, because Rrs is generally linearly proportional to particle backscattering 
coefficient (bb, see Eq. (5)) and because absorption at longer wavelengths (except absorption 
peaks of various phytoplankton pigments) is nearly stable [12, 17], bb

Lo in the longer 
wavelengths can then be derived following Eq. (6) as 

 ( ).Lo Hi
b bb b i≈  (9) 

This formulation is expended to shorter wavelengths based on the fact that the spectral 
variation of bb follows a simple power-law function [7, 18]. Thus, Eqs. (8) and (9) show how 
the effective bb

Lo and aLo can be derived from their high-resolution measurements. Equation 
(8) further indicates that, because RrsLo represents the arithmetic mean of RrsHi (see Eq. (3)), 
if the high-resolution pixels are not homogeneous (e.g., in frontal zones, coastal waters, etc.), 
aLo derived from RrsLo is the backscattering-weighted mean of aHi instead of an arithmetic 
mean of aHi. 

 

Fig. 2. (a) Rrs of 4 high-resolution pixels and their average. First value and second value in the 
parenthesis are the absorption coefficient of phytoplankton and CDOM at 440 nm, 
respectively. (b) Absorption spectrum derived from the average Rrs (blue line), as compared 
with the average absorption spectra using various schemes, including arithmetic mean, 
geometric mean, and backscattering-weighted mean (Eq. (8)). 

Table 1. Symbol and definition of spatially averaged properties. 

Symbol Definition
PLo 

Property (P) perceived by a low-resolution sensor
Parit Arithmetic mean of high-resolution observation of property P 
Pgeom Geometric mean of high-resolution observation of property P 
Pweig Weighted mean of high-resolution observation of property P 

Figure 2 shows an example to demonstrate this concept. Rrs spectra of 4 high-resolution 
pixels were simulated with the Lee et al [19] IOP-Rrs model. In this simple illustration, the 4 
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pixels had the same phytoplankton absorption and particle backscattering coefficients while 
the absorption coefficient of colored dissolved organic matter (CDOM) was varied from 0.1 
to 0.6 m−1. The Rrs spectrum perceived from the low-resolution pixel encompassing all 4 
high-resolution pixels was calculated as an arithmetic mean (Eq. (3)), as shown in Fig. 2(a) 
(black line). From a spectral optimization inversion algorithm [20], a was derived from RrsLo 
and shown in Fig. 2(b) as aLo (see Table 1 for definition of symbols). The arithmetic (and 
geometric) mean of absorption from the 4 high-resolution pixels showed much higher values 
(about 29% and 22% at 410 nm and 440 nm, respectively) in the blue-green wavelengths than 
aLo (see Fig. 2(b)). In contrast, the weighted mean, aweit, calculated with Eqs. (8) and (9) from 
RrsLo, closely (average absolute percentage difference is ~1.1%) follows aLo. 

These results clearly showed that the absorption coefficients in the shorter wavelengths 
perceived by a low-resolution pixel is much lower than the arithmetic mean of that from the 
high-resolution pixels, but it could be well represented by the backscattering-weighted mean. 
This result further suggests that the chlorophyll concentrations derived from low-resolution 
measurements are likely underestimated compared to that measured by high-resolution 
measurements, as the empirically derived chlorophyll concentration closely follows the total 
absorption coefficient [21–23]. Specifically for the examples shown in Fig. 2, using the same 
OC4 algorithm [24], the arithmetic mean chlorophyll concentration of the 4 high-resolution 
pixels are 5.4 mg/m3, but it is 4.7 mg/m3 from RrsLo, which is reduced by ~13%. Note that 
empirical band-ratio algorithms do not distinguish the impacts of phytoplankton and CDOM, 
so the variation of CDOM is perceived as variation of phytoplankton (Chl-a). 

Optically shallow bottom 

It has long been demonstrated that the depth of optically shallow bottom could be retrieved 
from spectral measurements of water color [25–28]. On the other hand, bottom depth (H, m) 
in shallow waters may change substantially in a small region, creating a similar problem to 
the above when comparing bottom depths derived from remote sensing measurements at 
different spatial resolutions. To address this problem, analytical expressions to relate low-
resolution and high-resolution bottom depth products, such as Eq. (8) for optically deep 
waters, are investigated here. 

Rrs of optically shallow waters can be expressed as [20, 29] 

 
( )
( )( ) ( )1 .c b B b

C B
rs rs

D a b H D a b Hdp
rs

Rrs G r r

G r e e
ρ
π

− + − +

= +

 = − +  

 (10) 

Here C
rsr  and B

rsr  are the sub-surface remote-sensing reflectance from the water column and 

the shallow bottom, respectively; ρ represents the bottom reflectance (albedo), while Dc,B is 
the path-elongation factor for the water column and bottom returned photons, respectively. 

dp
rsr  is the sub-surface remote-sensing reflectance of the same water column with an infinite 

depth. Clearly, compared to optically deep waters, the cross-pixel variations of 
inhomogeneous systems make it even harder to interpret low-resolution retrievals. 

To focus on the bottom depth retrievals, water properties (i.e., rrs
C) are assumed 

homogenous across multiple high-resolution pixels (but within a low-resolution pixel) due to 
current and tidal mixing [30, 31]. Then, the following equations can be derived from Eq. (3) 
and Eq. (9): 

 ( ) ( ) ( )( ) .
Lo Hi

B b B bD a b H D a b H iLo Hie i eρ ρ− + − +≈  (11) 

and, 
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The equations suggest that bottom depth derived from the low-resolution pixel (HLo) is not a 
simple average of bottom depths derived from the corresponding high-resolution pixels, and 
detailed information on both water column properties (a and bb) and high-resolution bottom 
properties (depth and albedo) is required to explain the low-resolution HLo. 

To help visualize this non-linear impact, consider that e-x is proportional to 1/x for x in any 
narrow range, Eq. (11) can then be simplified as 
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Equation (14) shows that in order to interpret HLo, information of the low-resolution 
perceived bottom albedo (ρLo) and the high-resolution bottom properties is required. In 
addition, unlike the case of backscattering coefficient of deep waters, ρLo in general is not an 
arithmetic mean of ρHi(i) because the contribution of substrate from the multiple high-
resolution pixels to a low-resolution pixel depends on both bottom albedo and depth. For a 
special case when the bottom albedo is uniform, Eq. (14) reduces to 
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Similar to the deep-water example in Fig. 2, an example is shown in Fig. 3 to illustrate the 
non-linear effect of bottom depth on high- and low-resolution pixels. The example used 
homogenous water properties and bottom albedo but varying bottom depths (2 – 10 m) across 
4 high-resolution pixels, and simulated their effect on the perceived bottom depth from a low-
resolution pixel encompassing all 4 high-resolution pixels. The 4 high-resolution Rrs spectra 
(see Fig. 3(a)) were generated from a shallow-water model (see Eq. (10)), and the arithmetic 
mean of these Rrs, as measured from a low-resolution pixel, were fed back to the simulation 
model with HLo derived via spectral optimization [20]. The perceived HLo from RrsLo is again 
much lower (~30% and 17%, respectively) than the arithmetic and geometric means of the 
four bottom depths, but agrees very well (within ~1% for this example) with that predicted by 
Eq. (15). This is consistent with radiative transfer as shallower bottom (assuming all other 
properties remain the same) results in greater radiance at sea surface and then contributes 
more to the total measured signal. 
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Fig. 3. (a) Rrs of 4 high-resolution pixels with varying bottom depth, and their arithmetic 
mean. Bottom reflectance (albedo) and water column properties are assumed the same. (b) 
Bottom depth derived from the average Rrs, HLo, as compared with the average bottom depth 
using various schemes. 

Tests on MERIS measurements 

The analyses and figures above demonstrate that water column and bottom depth properties 
derived from low-resolution data are lower than their arithmetic or geometric means derived 
from high-resolution data, and the former can be better described using a combination of 
high-resolution data and analytical equations similar to Eqs. (8), (14) and (15). To further 
prove this concept, satellite measurements from the Medium Resolution Imaging 
Spectrometer (MERIS) were used. MERIS measures the oceans at a nominal resolution of 
300-m (full resolution or FR), while aggregated MERIS data have 1.2-km resolution (reduced 
resolution or RR), with 1 RR pixel corresponding to 16 FR pixels. 

MERIS Level-2 data over the southern Ocean east of Argentina on 26 December 2011 
were obtained from the U.S. NASA Goddard Flight Space Center (GSFC). The data 
contained spectral Rrs derived from the most recent updates in sensor calibration and 
processing algorithms embedded in the software package SeaDAS6.4. The FR Rrs (RrsFR) 
data for a meso-scale eddy were used with the quasi-analytical algorithm [32] to derive total 
absorption and backscattering coefficients at 440 nm, aFR(440) (m−1) and BFR(440) (m−1), 
respectively, at 300-m resolution. Then, aFR(440) was aggregated to 1.2-km resolution to 
obtain arithmetic mean ( (440)RR

arita ), geometric mean ( (440)RR
geoma ), and backscattering-

weighted mean ( (440)RR
weita ) following Eq. (8). Further, aRR(440) was derived from RR Rrs 

(RrsRR) data using the same algorithm and compared with the various means of aFR(440) data. 
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Fig. 4. MERIS measurements over the southern Ocean east of Argentina on 12/26/2011, 13:22 
GMT, covering an area of about 163 x 134 km2. (a) aFR(440) (m−1) derived from the full-
resolution (FR, 300 m) Rrs data using the QAA algorithm; (b) aRR(440) derived from the 
reduced-resolution (RR, 1.2 km) Rrs data using the same algorithm. 1 pixel in the RR image 
corresponds to 16 pixels in the FR image; (c) Ratio of aRR(440) over arithmetic mean of 
aFR(440); (d) Ratio of aRR(440) over backscattering-weighted mean of aFR(440) (Eq. (8)). Note 
that many pixels in (c) show ratios significantly lower than 1.0, as predicted in Fig. 2(b). Black 
points in (c) and (d) indicate clouds. The histograms of the ratios are shown below. 

Figures 4(a) and 4(b) show aFR(440) and aRR(440), respectively; while the ratios of 
aRR(440) to (440)RR

arita and (440)RR
weita , respectively, are calculated and shown in Figs. 4(c) and 

4(d). Ratio of aRR(440) to (440)RR
geoma is also calculated but not shown (except its histogram, 

see Fig. 5). Compared with (440)RR
arita , aRR(440) is biased low for the patchy eddy (see Fig. 

4(c)) where the ratio is often < 0.9. This trend is consistent with the simulation results in Fig. 
2(b), although there are 16 FR pixels corresponding to 1 RR pixel here. In contrast, 

(440)RR
weita  agrees much better (see Fig. 5) with aRR(440), also consistent with the simulation 

results in Fig. 2(b). These contrasting results are further demonstrated in Fig. 5 where the 
histogram distributions of the a(440) ratios clearly show the improvement in the 
backscattering-weighted mean when using high-resolution products to compare with low-
resolution products. 
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Fig. 5. Histograms of ratios between aRR(440) derived from MERIS RR data (1.2 km) and 
various averages of aFR(440) derived from MERIS FR (300 m) data. For any 1.2-km pixel, the 
average values over the corresponding sixteen 300-m pixels were calculated as arithmetic 
mean, geometric mean, and backscattering-weighted mean (Eq. (8)). The three ratios are 0.95 
± 0.54 (mean ± standard deviation), 0.97 ± 0.28, and 0.99 ± 0.14, respectively, while they are 
all skewed towards values < 1.0. 

Implications for satellite remote sensing 

The simulations and MERIS examples clearly show that when the water is patchy, low-
resolution products are likely underestimated when compared to the “truth” (i.e., arithmetic 
mean of products from high-resolution measurements). This is simply because that the result 
of arithmetic mean favors higher values, and higher remote-sensing reflectance in the blue-
green domain (the spectral window for sensing subsurface constituents or bottom depth) is 
likely associated with lower absorption or shallower bottom depth, although the actual 
situation will depend on the detailed spatial distribution of water and/or bottom properties. 
There are many cases where ocean waters are patchy [33, 34], for example in eddies, fronts, 
river plumes, or coastal blooms. Then, when high-resolution measurements are not available 
and there is substantial spatial variability, one can infer that the low-resolution products are 
possibly biased low. The same argument can also be applied for the global biomass standing 
stocks and for validation of satellite data using discrete field data. However, it is yet to be 
investigated to what degree the global biomass is underestimated due to a combination of 
ocean patchiness and low-spatial resolution measurement. 

Conclusions 

Analytical expressions are developed to provide an explicit interpretation of low resolution 
measurements and an easy way to remove uncertainties when comparing high-resolution and 
low-resolution data. It is found that the low-resolution product can be well represented using 
weighted means of high-resolution data. The concept has been demonstrated through 
simulations and satellite data analysis. These relationships provide insights into the spatial 
meaning of remote sensing products, especially for spatially inhomogeneous environments. 
Application of these relationships can reduce uncertainties when comparing measurements 
from platforms with different spatial resolutions. For spatially inhomogeneous environments, 
because remote-sensing reflectance (or water-leaving radiance) is a non-linear function of the 
water column constituents and bathymetry, products (e.g., chlorophyll-a concentration, 
CDOM absorption) derived from low-resolution measurements are likely biased low 
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compared to their arithmetic means from the corresponding high-resolution measurements. 
Thus, to overcome the uncertainty resulted in low- or medium-resolution measurements by 
ocean color sensors (e.g., SeaWiFS, MODIS), it is necessary to have concurrent high-
resolution measurements (e.g., measurement with a few wide-bandwidth, high-spatial 
resolution, bands). 
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